This is default featured post 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

lunes, 5 de diciembre de 2011

mapa convceptual recursos multimedia

RECURSOS MULTIMEDIA

Los recursos multimedia son herramientas que nos sirven para complementar otros proyectos, los medios utilizados pueden ser en forma de texto, gráficas, video, sonido, imagen; el objetivo es hacer más atractivo el proyecto o actividad que acompañan.
Dentro del ámbito educativo la utilización de estos recursos va a hacer que las actividades que se desarrollen sean más dinámicas, creativas, atractivas, interactivas y participativas y consecuentemente más amenas y de fácil comprensión para el aprendizaje. El docente por tanto enriquece su enseñanza mediante el amplio abanico de medios enfocado de una manera más práctica y no tanto de memorización y los alumnos se muestran más activos y adquieren autonomía.

LA CORRIENTE ELÉCTRICA



LA CORRIENTE ELÉCTRICA



Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).


En un circuito eléctrico cerrado la. corriente circula siempre del polo. negativo al polo positivo de la. fuente de fuerza electromotriz. (FEM),


Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente de FEM. Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.

Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que "cargas distintas se atraen y cargas iguales se rechazan". Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese “error histórico” no influye para nada en lo que al estudio de la corriente eléctrica se refiere.




REQUISITOS PARA QUE CIRCULE LA CORRIENTE ELÉCTRICA





Para que una corriente eléctrica circule por un circuito es necesario que se disponga de tres factores fundamentales:




1.
Fuente de fuerza electromotriz (FEM). 2. Conductor. 3. Carga o resistencia conectada al circuito. 4. Sentido de circulación de la corriente eléctrica.



1.      Una fuente de fuerza electromotriz (FEM) como, por ejemplo, una batería, un generador o cualquier otro dispositivo capaz de bombear o poner en movimiento las cargas eléctricas negativas cuando se cierre el circuito eléctrico.
2.      Un camino que permita a los electrones fluir, ininterrumpidamente, desde el polo negativo de la fuente de suministro de energía eléctrica hasta el polo positivo de la propia fuente. En la práctica ese camino lo constituye el conductor o cable metálico, generalmente de cobre.
3.      Una carga o consumidor conectada al circuito que ofrezca resistencia al paso de la corriente eléctrica. Se entiende como carga cualquier dispositivo que para funcionar consuma energía eléctrica como, por ejemplo, una bombilla o lámpara para alumbrado, el motor de cualquier equipo, una resistencia que produzca calor (calefacción, cocina, secador de pelo, etc.), un televisor o cualquier otro equipo electrodoméstico o industrial que funcione con corriente eléctrica.




Cuando las cargas eléctricas circulan normalmente por un circuito, sin encontrar en su camino nada que interrumpa el libre flujo de los electrones, decimos que estamos ante un “circuito eléctrico cerrado”. Si, por el contrario, la circulación de la corriente de electrones se interrumpe por cualquier motivo y la carga conectada deja de recibir corriente, estaremos ante un “circuito eléctrico abierto”. Por norma general todos los circuitos eléctricos se pueden abrir o cerrar a voluntad utilizando un interruptor que se instala en el camino de la corriente eléctrica en el propio circuito con la finalidad de impedir su paso cuando se acciona manual, eléctrica o electrónicamente.



INTENSIDAD DE LA CORRIENTE ELÉCTRICA





La intensidad del flujo de los electrones de una corriente eléctrica que circula por un circuito cerrado depende fundamentalmente de la tensión o voltaje (V) que se aplique y de la resistencia (R) en ohm que ofrezca al paso de esa corriente la carga o consumidor conectado al circuito. Si una carga ofrece poca resistencia al paso de la corriente, la cantidad de electrones que circulen por el circuito será mayor en comparación con otra carga que ofrezca mayor resistencia y obstaculice más el paso de los electrones.







Analogía hidráulica. El tubo del depósito "A", al tener un diámetro reducido, ofrece más resistencia a< la salida del líquido que el tubo del tanque "B", que tiene mayor diámetro. Por tanto, el caudal o cantidad. de agua que sale por el tubo "B" será mayor que la que sale por el tubo "A".





Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.

De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm, provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.

La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el ampere (llamado también “amperio”), que se identifica con la letra ( A ).





EL AMPERE
De acuerdo con la Ley de Ohm, la corriente eléctrica en ampere ( A ) que circula por un circuito está estrechamente relacionada con el voltaje o tensión ( V ) y la resistencia en ohm ( ) de la carga o consumidor conectado al circuito.
br>
Definición de ampere

Un ampere ( 1 A ) se define como la corriente que produce una tensión de un volt ( 1 V ), cuando se aplica a una resistencia de un ohm ( 1 ).

Un ampere equivale una carga eléctrica de un coulomb por segundo ( 1C/seg ) circulando por un circuito eléctrico, o lo que es igual, 6 300 000 000 000 000 000 = ( 6,3 · 1018 ) (seis mil trescientos billones) de electrones por segundo fluyendo por el conductor de dicho circuito. Por tanto, la intensidad ( I ) de una corriente eléctrica equivale a la cantidad de carga eléctrica ( Q ) en coulomb que fluye por un circuito cerrado en una unidad de tiempo.

Los submúltiplos más utilizados del ampere son los siguientes:

miliampere ( mA ) = 10-3 A = 0,001 ampere
microampere ( mA ) = 10-6 A = 0, 000 000 1 ampere

MEDICIÓN DE LA INTENSIDAD DE LA CORRIENTE ELÉCTRICA O AMPERAJE





La medición de la corriente que fluye por un circuito cerrado se realiza por medio de un amperímetro o un. miliamperímetro, según sea el caso,  conectado  en  serie  en  el  propio  circuito  eléctrico.  Para  medir. ampere se emplea el "amperímetro" y para medir milésimas de ampere se emplea el miliamperímetro.





La intensidad de circulación de corriente eléctrica por un circuito cerrado se puede medir por medio de un amperímetro conectado en serie con el circuito o mediante inducción electromagnética utilizando un amperímetro de gancho. Para medir intensidades bajas de corriente se puede utilizar también un multímetro que mida miliampere (mA).







           Amperímetro de gancho

Multímetro digital

                   Multímetro analógico

El ampere como unidad de medida se utiliza, fundamentalmente, para medir la corriente que circula por circuitos eléctricos de fuerza en la industria, o en las redes eléctricas doméstica, mientras que los submúltiplos se emplean mayormente para medir corrientes de poca intensidad que circulan por los circuitos electrónicos.




VOLTAJE, TENSIÓN O DIFERENCIA DE POTENCIAL

VOLTAJE, TENSIÓN O DIFERENCIA DE POTENCIAL


El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.

A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.










Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de  la  propia  fuente< de fuerza electromotriz.



La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de< cargas eléctricas negativas (iones negativos o aniones), con exceso de electrones en el polo negativo (–)< y la acumulación de cargas eléctricas positivas (iones positivos o cationes), con defecto de electrones< en el polo positivo (+) de la propia fuente de FEM.





A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro",< con un solo electrón girando en su última órbita y a la derecha un "ión" cobre, después que el átomo ha< perdido el único electrón que posee en su órbita más externa. Debido a   que  en  esas  condiciones  la< carga positiva de los protones supera a las cargas negativas  de  los e lectrones  que  aún  continúan< girando en el resto de las órbitas, el ión se denomina en este caso "catión", por tener carga positiva.<



En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.

FUENTES DE FUERZA ELECTROMOTRIZ (FEM)





Como fuente de fuerza electromotriz se entiende cualquier dispositivo capaz de suministrar energía eléctrica dinámica, ya sea utilizando medios químicos, como las baterías, o electromecánicos, como ocurre con los generadores de corriente eléctrica.



Batería como las comúnmente utilizadas en coches y vehículos motorizados.
Generador sincrónico empleado. para producir< corriente  alterna en  centrales  termoeléctricas< de pequeño tamaño.




Existen también otros tipos de dispositivos como, por ejemplo, las fotoceldas o celdas solares, que convierten la luz en electricidad; los termopares, cuyos alambres transforman la alta temperatura que reciben en el punto de unión de dos de sus extremos en voltajes muy bajos, y los dispositivos piezoeléctricos, que también producen voltajes muy bajos cuando se ejerce una presión sobre ellos.

Mediante el uso de celdas solares se puede suministrar energía eléctrica a viviendas situadas en lugares muy apartados donde es imposible o poco rentable transmitirla por cables desde una central eléctrica.

Los termopares se utilizan como sensores en instrumentos electrónicos de precisión, como los destinados a medir, por ejemplo, temperatura en hornos y calderas. Los dispositivos piezoeléctricos constituyen, por su parte, la pieza fundamental para convertir las vibraciones mecánicas que capta dicho dispositivo en pulsaciones eléctricas, como ocurre en algunos tipos de micrófonos y en las cápsulas de tocadiscos o giradiscos.

ANALOGÍA HIDRÁULICA CON REFERENCIA A UN CIRCUITO ELÉCTRICO





Analogía hidráulica con respecto a la tensión o voltaje. En la figura aparecen tres recipientes llenos de líquido, cuyos tubos de salida se encuentran todos al mismo nivel. Por la tubería del recipiente "B", el líquido saldrá con mayor presión que por la tubería del recipiente "A", por encontrarse el "B" a mayor altura. Lo mismo ocurre con el recipiente "C", que, aunque se encuentra al mismo nivel que el recipiente "A", cuando se ejerce presión con un émbolo sobre la superficie del líquido, éste saldrá también a mayor presión por el tubo.
De forma parecida a esta analogía hidráulica actúa la fuente de
fuerza electromotriz (FEM) para mover las cargas eléctricas por un conductor. A mayor presión que ejerza la fuente de FEM sobre las cargas eléctricas o electrones, mayor será también el voltaje, tensión o diferencia de pontencial que estará presente en un determinado cicuito eléctrico.





Si comparamos el circuito eléctrico con un sistema hidráulico, el voltaje sería algo similar a la presión que se ejerce sobre el líquido en una tubería para su bombeo. Si la presión del sistema hidráulico aumenta, la fuerza de la corriente del líquido que fluye por la tubería también aumenta. De igual forma, cuando se incrementa el voltaje, la intensidad de la corriente de electrones que fluye por el circuito eléctrico también aumenta, siempre que el valor de la resistencia se mantenga constante.

MEDICIÓN DE LA TENSIÓN O VOLTAJE





Para medir tensión o voltaje existente en una fuente de fuerza electromotriz (FEM) o e un circuito eléctrico, es necesario disponer de un instrumento de medición llamado voltímetro, que puede ser tanto del del tipo analógico como digital.

El voltímetro se instala de forma paralela en relación con la fuente de suministro de energía eléctrica. Mediante un multímetro o “tester” que mida voltaje podemos realizar también esa medición. Los voltajes bajos o de baja tensión se miden en volt y se representa por la letra (V), mientras que los voltajes medios y altos (alta tensión) se miden en kilovolt, y se representan por las iniciales (kV).



1. Voltímetro analógico. 2. Voltímetro digital. 3. Miliamperímetro analógico. 4. Amperímetro digital.  El voltímetro siempre se conecta en paralelo con la fuente de suministro de fuerza electromotriz, mientras que el amperímetro y el miliamperímetro se colocan en serie.



Diferencias entre la alta, baja y media tensión

Alta tensión
. Se emplea para transportar altas tensiones a grandes distancias, desde las centrales generadoras hasta las subestaciones de transformadores. Su transportación se efectúa utilizando gruesos cables que cuelgan de grandes aisladores sujetos a altas torres metálicas. Las altas tensiones son aquellas que superan los 25 kV (kilovolt).

Media tensión. Son tensiones mayores de 1 kV y menores de 25 kV. Se emplea para transportar tensiones medias desde las subestaciones hasta las subestaciones o bancos de transformadores de baja tensión, a partir de los cuales se suministra la corriente eléctrica a las ciudades. Los cables de media tensión pueden ir colgados en torres metálicas, soportados en postes de madera o cemento, o encontrarse soterrados, como ocurre en la mayoría de las grandes ciudades.

Baja tensión. Tensiones inferiores a 1 kV que se reducen todavía más para que se puedan emplear en la industria, el alumbrado público y el hogar. Las tensiones más utilizadas en la industria son 220, 380 y 440 volt de corriente alterna y en los hogares entre 110 y 120 volt para la mayoría de los países de América y 220 volt para Europa.
Hay que destacar que las tensiones que se utilizan en la industria y la que llega a nuestras casas son alterna (C.A.), cuya frecuencia en América es de 60 ciclos o hertz (Hz), y en Europa de 50 ciclos o hertz.

OTROS DATOSAunque desde hace años el Sistema Internacional de Medidas (SI) estableció oficialmente como “volt” el nombre para designar la unidad de medida del voltaje, tensión eléctrica o diferencia de potencial, en algunos países de habla hispana se le continúa llamando “voltio”.
El volt recibe ese nombre en honor al físico italiano Alessandro Volta (1745 – 1827), inventor de la pila eléctrica conocida como “pila de Volta”, elemento precursor de las actuales pilas y baterías eléctricas.





UNIDADES ELÉCTRICAS

UNIDADES ELÉCTRICAS


El propósito de este trabajo es de dar a conocer las magnitudes y unidades que tiene l a electricidad como tal.
Este documento de trabajo contiene, básicamente cuales son esas magnitudes y unidades, además, de unos términos correspondientes a palabras escritas presentadas en el trabajo, teniendo en cuenta que para un mayor aprendizaje se requieren anexos por lo cual son presentados allí.
Objetivos generales
·         Determinar cuales son las magnitudes y unidades de la electricidad.
·         Que significa cada una, con que letra se representa y cual es el símbolo correspondiente.
·         Determinar los diferentes aparatos para medir las magnitudes y sus unidades.
Objetivos específicos
·         Hacer exposiciones y trabajos para saber acerca del tema.
·         Realizar quiz o pregunta acerca de este tema y así saber se fueron aprendidos los símbolos y su representación.
·         Conseguir estos aparatos y saber determinar cual es el de cada magnitud.

Voltaje, tensión o diferencia de potencial (V)
En un circuito eléctrico, la diferencia de potencial (el voltaje o la tensión) existente entre los polos del generador o entre los puntos cualesquiera del circuito, es la causa de que los electrones circulen por el circuito si este se encuentra cerrado.
Su unidad es el voltio (v). Se suelen emplear dos múltiplos de esta unidad que son el kilovoltio (kV) y el megavoltio (mV) y también dos submúltiplos como son el milivoltio (mV) y el microvoltio (µV).
1kV= 1.000 V 1MV= 1.000.000 V
1V= 1000MV 1 V= 1.000.000 µV
Para medir el voltaje se utiliza un aparato llamado voltímetro. Se conecta en paralelo al elemento cuyo voltaje queremos medir.
Intensidad de la corriente eléctrica (I).
La intensidad de la corriente se define como la cantidad de carga eléctrica que circula por un circuito en la unidad de tiempo.
Se mide en Amperio (a). Normalmente se emplean de unos submúltiplos de esta unidad que son miliamperio (mA) y el microamperio (µA)
1 A= 1.000 mA 1 A= 1.000.000 µA
La intensidad es una característica equivalente al caudal en el circuito hidráulico, esto es, a la cantidad de agua que pasa en la unidad de tiempo por un punto de la tubería.
Las unidades de la electricidad definidas por el Sistema Internacional para las magnitudes relacionadas por la ley de Ohm son: el voltio para la tensión; el amperio para la intensidad; y el ohmio para la resistencia.

Voltio

El voltio es la unidad del SI para el potencial eléctrico, la fuerza electromotriz y el voltaje. Recibe su nombre en honor de Alessandro Volta, quien en 1800 inventó la primera batería química. Es representado simbólicamente por la letra V. Se define como la diferencia de potencial a lo largo de un conductor cuando una corriente con una intensidad de un amperio consume un vatio de potencia.

Amperio

El amperio es la unidad del SI para la intensidad de corriente eléctrica. Fue nombrado en honor de André-Marie Ampère. Un amperio es la intensidad de corriente que, al circular por dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y separados entre sí en el vacío a lo largo de una distancia de un metro, produce una fuerza entre los conductores de 2·10-7 newton por cada metro de conductor; también se puede conceptualizar como el paso de un Columbio (6.28 x 1016 electrones) en un segundo a través de un conductor. Se representa con la letra A.

Ohmio

El ohmio es la unidad del SI para la resistencia eléctrica. Se representa con la letra griega Ω. Su nombre deriva del apellido del físico Georg Simon Ohm, que definió la ley del mismo nombre. Un ohmio es la resistencia eléctrica que presenta una columna de mercurio de 106,3 cm de altura y 1 mm2 de sección transversal, a una temperatura de 0 °C.




Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More